專任研究人員
liaoj@as.edu.tw +886-2-27855696
廖俊智 院長
中研院生化所 709室

研究領域與專長

我們的研究著重於代謝,包括其生物化學、演化以及調控。我們運用代謝工程、合成生物學與演化工程,構建能夠吸收並轉化溫室氣體的微生物與植物,以因應氣候變遷,並推進生質能源的應用。我們也開發數學工具,用於探究代謝並指導工程設計。目前,我們的主要計畫包括改造蛋白質、生化途徑、微生物與植物,以進行二氧化碳固定以及甲烷與甲醇的轉化。我們的最終目標是以生化方法取代石油加工。

Recent publications:      

Dual-cycle CO2 fixation enhances growth and lipid synthesis in Arabidopsis thaliana      

Free Download 

Kuan-Jen Lu, Chia-Wei Hsu, Wann-Neng Jane, Mien-Hao Peng, Ya-Wen Chou, Pin-Hsuan Huang, Kuo-Chen Yeh, Shu-Hsing Wu, James C Liao       

Science 389 (6765), eadp3528 DOI: 10.1126/science.adp3528

Carbon fixation through the Calvin-Benson-Bassham (CBB) cycle accounts for the majority of carbon dioxide (CO2) uptake from the atmosphere. The CBB cycle generates C3 carbohydrates but is inefficient at producing acetyl–coenzyme A (CoA) (C2), which is the universal precursor for synthesizing lipids. In this work, we introduced in Arabidopsis thaliana a new-to-nature CO2 fixing cycle, malyl-CoA-glycerate (McG) cycle, which together with the CBB cycle forms a dual cycle CO2 fixation system. This cycle can fix one additional carbon by phosphoenolpyruvate carboxylase and convert the photorespiration product, glycolate, to acetyl-CoA. Plants with the McG cycle show enhanced protein abundance in their photosystems and enhanced photosystem II efficiency. McG plants had doubled CO2 fixation rates under atmospheric CO2, increased lipid production, pronounced growth enhancement, and tripled the seed yield.

 

Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol

LY Nieh, FYH Chen, HW Jung, KY Su, CY Tsuei, CT Lin, YQ Lee, JC Liao

Nature Communications 15 (1), 8840  DOI: 10.1038/s41467-024-53206-4

As methanol can be derived from either CO2 or methane, methanol economy can play an important role in combating climate change. In this scenario, rapid utilization of methanol by an industrial microorganism is the first and crucial step for efficient utilization of the C1 feedstock chemical. Here, we report the development of a methylotrophic E. coli strain with a doubling time of 3.5 hours under optimal conditions, comparable or faster than native model methylotrophs Methylorubrum extorquens AM1 (Td~4hr) and Bacillus methanolicusat 37°C (Td~5hr). To accomplish this, we develop a bacterial artificial chromosome (BAC) with dynamic copy number variation (CNV) to facilitate overcoming the formaldehyde-induced DNA-protein cross-linking (DPC) problem in the evolution process. We track the genome variations of 75 cultures along the evolution process by next-generation sequencing, and identified the features of the fast-growing strain. After stabilization, the final strain (SM8) grows to 20 g/L of cell mass within 77 hrs in a bioreactor. This study illustrates the potential of dynamic CNV as an evolution tool and syntheticmethylotrophs as a platform for sustainable biotechnological applications. 

 

An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria

KJ Lu, CW Chang, CH Wang, FYH Chen, IY Huang, PH Huang, CH Yang, ...

Nature Metabolism 5 (7), 1111-1126  DOI: 10.1038/s42255-023-00831-w

Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin–Benson–Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light–dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.

 

A cell-free self-replenishing CO2-fixing system

S Luo, PP Lin, LY Nieh, GB Liao, PW Tang, C Chen, JC Liao

Nature Catalysis 5 (2), 154-162   DOI:10.1038/s41929-022-00746-x

Biological CO2 fixation is so far the most effective means for CO2 reduction at scale and accounts for most of the CO2 fixed on Earth. Through this process, carbon is fixed in cellular components and biomass during organismal growth. To uncouple CO2 fixation from growth and cellular regulation, cell-free CO2 fixation systems represent an alternative approach since the rate can be independently manipulated. Here we designed an oxygen-insensitive, self-replenishing CO2 fixation system with opto-sensing. The system comprises a synthetic reductive glyoxylate and pyruvate synthesis (rGPS) cycle and the malyl-CoA-glycerate (MCG) pathway to produce acetyl-coenzyme A (CoA), pyruvate and malate from CO2, which are also intermediates in the cycle. We solved various problems associated with the in vitro system, and implemented opto-sensing modules to control the regeneration of cofactors. We accomplished sustained operation for 6 hours with a CO2-fixing rate comparable to or greater than typical CO2 fixation rates of photosynthetic or lithoautotrophic organisms.

 

Converting Escherichia coli to a synthetic methylotroph growing solely on methanol

FYH Chen, HW Jung, CY Tsuei, JC Liao

Cell 182 (4), 933-946. e14 DOI:10.1016/j.cell.2020.07.010

Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilatemethanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.

學經歷

學歷

  • 1982 – 1987   博士, 化學工程, 美國威斯康辛大學麥迪生校區
  • 1976 – 1980   學士, 化學工程系, 國立臺灣大學

經歷

  • 2016 – 迄今   院長, 中央研究院
  • 2016   特聘研究員, 中央研究院生物化學研究所
  • 2015 – 2016   系主任, 美國加卅大學洛杉磯校區 生物工程系
  • 2013 – 2016   合聘教授, 美國加卅大學洛杉磯校區 生物工程系
  • 2012 – 2016   系主任, 美國加卅大學洛杉磯校區 化學暨生物分子工程系
  • 2011 – 2016   Ralph M. Parsons 基金會講座教授, 美國加卅大學洛杉磯校區 化學暨生物分子工程系
  • 2011 – 2016   合聘教授, 美國加卅大學洛杉磯校區 化學暨生物化學系
  • 2010 – 2016   合聘教授, 美國加卅大學洛杉磯校區 分子生物研究所
  • 2009 – 2012   副系主任, 美國加卅大學洛杉磯校區 化學暨生物分子工程系
  • 2008 – 2011   校長講座教授, 美國加卅大學洛杉磯校區 化學暨生物分子工程系
  • 2007 – 2015   能源研究副主任, 美國加卅大學洛杉磯校區 基因體暨蛋白質體研究所
  • 2003 – 2007   副主任, 美國加卅大學洛杉磯校區 仿細胞太空探索研究所
  • 2002 – 2007   副系主任, 美國加卅大學洛杉磯校區 化學暨生物分子工程系
  • 1997 – 2016   教授, 美國加卅大學洛杉磯校區 化學暨生物分子工程系
  • 1993 – 1997   合聘副教授, 美國德卅農工大學 生物化學暨生物物理系
  • 1993 – 1997   副教授, 美國德卅農工大學 化學工程系
  • 1990 – 1993   助理教授, 美國德卅農工大學(Texas A&M University ) 化學工程系
  • 1987 – 1989   研究科學家, 美國紐約卅羅徹斯特柯達公司 (Eastman Kodak Company)

獎項

  • 2025   法國榮譽軍團騎士勳章
  • 2024   歐洲分子生物組織 (European Molecular Biology Organization, EMBO)外籍院士 (Associate Member)
  • 2023   國際代謝工程學會The Gregory N. Stephanopoulos Award for Metabolic Engineering
  • 2021   以色列Samson總理獎 (The Samson - Prime Minister’s prize for innovation in alternative energy and smart mobility for transportation)
  • 2019   諾維信傑出化學及生化工程獎
  • 2015   美國發明家學院 (National Academy of Inventors) 院士
  • 2015   美國國家科學院院士
  • 2014   中央研究院院士
  • 2014   美國國家科學院工業應用科學奬
  • 2013   義大利ENI再生能源獎
  • 2013   美國國家工程學院院士
  • 2012   美國白宮再生能源創新獎
  • 2010   美國環保署綠色化學學術組總統獎
  • 2009   生物工程學會 James E. Bailey 獎
  • 2009   美國化學工程學會 Alpha Chi Sigma 獎
  • 2009   美國化學學會Marvin J. Johnson 獎
  • 2008   工業微生物學會 (SIMB) Charles Thom獎
  • 2006   默克 (Merck) 代謝工程獎
  • 2006   美國化學工程學會 食品、醫藥暨生物工程組獎
  • 2002   美國醫學暨生物工程學院院士
  • 1992   美國行政院國家科學委員會年輕研究員獎

主要著作

Dual-cycle CO2 fixation enhances growth and lipid synthesis in Arabidopsis thaliana.  
Lu KJ, Hsu CW, Jane WN, Peng MH, Chou YW, Huang PH, Yeh KC, Wu SH, Liao JC  
Science (2025)

Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol.  
Nieh LY, Chen FY, Jung HW, Su KY, Tsuei CY, Lin CT, Lee YQ, Liao JC  
Nature Commun (2024)

An ATP-sensitive phosphoketolase regulates carbon fixation in cyanobacteria.  
Lu KJ, Chang CW, Wang CH, Chen FY, Huang IY, Huang PH, Yang CH, Wu HY, Wu WJ, Hsu KC, Ho MC, Tsai MD, Liao JC  
Nature Metabolism (2023)

A cell-free self-replenishing CO2-fixing system.  
Luo S, Lin PP, Nieh LY, Liao GB, Tang PW, Chen C, Liao JC  
Nature Catalysis (2022)

Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol.  
Chen FY, Jung HW, Tsuei CY, Liao JC  
Cell (2020)

Metabolic repair through emergence of new pathways in Escherichia coli.  
Pontrelli S, Fricke RCB, Teoh ST, Laviña WA, Putri SP, Fitz-Gibbon S, Chung M, Pellegrini M, Fukusaki E, Liao JC  
Nature Chemical Biology (2018)

Synthetic Non-Oxidative Glycolysis Enables Complete Carbon Conservation.  
Bogorad IW, Lin TS, Liao JC  
Nature (2013)

Integrated electro-microbial conversion of CO2 to higher alcohols.  
Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC  
Science (2012)

Non-Fermentative Pathways for Synthesis of Branched-Chain Higher Alcohols as Biofuels.  
Atsumi S, Hanai T, Liao JC  
Nature (2008)

A synthetic gene-metabolic oscillator.  
Fung E, Wong WW, Suen JK, Bulter T, Lee SG, Liao JC  
Nature (2005)

著作列表