Research

Our Interests

Our laboratory is interested in deciphering the functional and mechanistic role of homologous recombination in biology.

The Biology of Homologous Recombination

Homologous recombination (HR) governs genomic transactions. It represents a major chromosome repair tool that helps to eliminate deleterious lesions such as DNA double strand breaks (DSBs), mediate the restart of stalled or collapsed DNA replication forks, ensure proper meiotic chromosome segregation, as well as to maintain the length of telomeres in some circumstances (Fig. 1). As such, HR is indispensable for the maintenance of genome integrity. Studies in the past have provided compelling evidence for a tumor suppression role of HR. For instance, cell lines from familial breast cancer patients that harbor mutations in BRCA2 exhibit hypersensitivity to DNA damaging agents and a pronounced deficiency in HR. Aside from its genome maintenance and tumor suppression functions, HR also serves more specialized roles in various organisms, such as mating type switching in the budding yeast and V(D)J recombination in the immune system. In summary HR play an essential role in biology and dysregulation of HR causes severe disease such as cancer.

Homologous Recombination Pathway

HR is often induced via the formation of DSBs, which leads to the nucleolytic processing of DSB ends to generate 3′ single-stranded DNA (ssDNA) tails. Herein, the 3′ single-stranded tail associates with recombinases to form a nucleoprotein filament, which is then activated to invade a homologous duplex DNA molecule to form a displacement loop or D-loop. The 3′ invading strand is extended by DNA synthesis, followed by the pairing of the non-invading 3′ single-stranded tail with the homologous ssDNA strand in the enlarging D-loop (second end capture). The now paired second 3′ end is also extended by DNA synthesis and subsequent ligations generate a double Holliday Junction (dHJ) intermediate. Resolution of the dHJ intermediate can result in crossover or non-crossover recombinant products (Fig. 2). In summary, the HR pathway is constituted by a sequence of events that involve (1) DSBs formation; (2) end resection to create 3′ overhang ssDNA; (3) assembly of recombinase onto ssDNA; (4) D-loop mediated DNA synthesis; and (5) formation & resolution of dHJ intermediate.

Degrees and Positions Held
Positions Held
  • 2019 – present   Professor, Institute of Biochemical Sciences, National Taiwan University
  • 2018 – present   Joint Appointment Associate Research Fellow, Institute of Biological Chemistry, Academia Sinica
  • 2014 – 2019   Associate Professor, Institute of Biochemical Sciences, National Taiwan University
  • 2010 – 2014   Assistant Professor, Institute of Biochemical Sciences, National Taiwan University
  • 2011 – 2018   Joint Appointment Assistant Research Fellow, Institute of Biological Chemistry, Academia Sinica
  • 2010 – 2010   Postdoctoral Associate, Yale University
  • 2008 – 2010   Postdoctoral Fellow, The Rockefeller University
Degrees
  • 2003 – 2007   Ph.D., Molecular Biophysics and Biochemistry, Yale University
Selected Publications
Yeh HY, Lin SW, Wu YC, Chan NL, Chi P
Scientific Reports (2017)
Su GC, Yeh HY, Lin SW, Chung CI, Huang YS, Liu YC, Lyu PC, Chi P
Nucleic Acids Res. (2016)
Chang HY, Liao CY, Su GC, Lin SW, Wang HW, Chi P
J. Biol. Chem. (2015)
Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, Chi P
Nucleic Acids Res. (2014)
Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P, Ira G
Nature (2013)
Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, Chi P
Nucleic Acids Res. (2012)
Chi P, Kwon Y, Visnapuu ML, Lam I, Santa Maria SR, Zheng X, Epshtein A, Greene EC, Sung P, Klein HL
Nucleic acids research (2011)
Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, Chi P, Prakash R, Seong C, Liu D, Lu L, Ira G, Sung P
Nature (2010)
Chi P, San Filippo J, Sehorn MG, Petukhova GV, Sung P
Genes & development (2007)
Chi P, Kwon Y, Seong C, Epshtein A, Lam I, Sung P, Klein HL
J. Biol. Chem. (2006)
Publications List
  1. Lee CY, Su GC, Huang WY, Ko MY, Yeh HY, Chang GD, Lin SJ, (Chi P) (2019-01) Nature Communications 10(1), 65 “Promotion of homology-directed DNA repair by polyamines.”
  2. Klein HL, Ang KKH, Arkin MR, Beckwitt EC, Chang YH, Fan J, Kwon Y, Morten MJ, Mukherjee S, Pambos OJ, El Sayyed H, Thrall ES, Vieira-da-Rocha JP, Wang Q, Wang S, Yeh HY, Biteen JS, (Chi P), Heyer WD, Kapanidis AN, Loparo JJ, Strick TR, Sung P, Van Houten B, Niu H, Rothenberg E (2019-01) Microbial cell 6(1), 65-101 “Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes.”
  3. Lu CH, Yeh HY, Su GC, Ito K, Kurokawa Y, Iwasaki H*, (Chi P)*, & Li HW* (2018-10) Proc. Nat. Acad. Sci. U.S.A. 115(43), E10059-E10068 “Swi5-Sfr1 Stimulates Rad51 Recombinase Filament Assembly by Modulating Rad51 Dissociation.”
  4. Huang WY, Lai SF, Chiu HY, Chang M, Plikus M, Chan CC, Chen YT, Tsao PN, Yang TL, Lee HS, (Chi P), and Lin SJ (2017-11) Cancer Research 77(22), 6083-6096 “Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy.”
  5. Yeh HY, Lin SW, Wu YC, Chan NL, and (Chi P)*. (2017-05) Scientific Reports 7(1), 2370 “Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C.”
  6. Chao A, Chang TC, Lapke N, Jung SM, (Chi P), Chen CH, Yang LY, Lin CT, Huang HJ, Chou HH, Liou JD, Chen SJ, Wang TH, and Lai CH (2016-12) Oncotarget 7(51), 85529-85541 “Prevalence and clinical significance of BRCA1/2 germline and somatic mutations in Taiwanese patients with ovarian cancer.”
  7. Su GC, Yeh HY, Lin SW, Chung CI, Huang YS, Liu YC, Lyu PC, and (Chi P)*. (2016-07) Nucleic Acids Res. 44(13), 6242-6251 “Role of the RAD51-SWI5-SFR1 ensemble in homologous recombination.”
  8. Chang HY, Liao CY, Su GC, Lin SW, Wang HW, (Chi P) (2015-08) The Journal of biological chemistry 290(32), 19863-19873 “Functional Relationship of ATP Hydrolysis, Presynaptic Filament Stability, and Homologous DNA Pairing Activity of the Human Meiotic Recombinase DMC1.”
  9. Huang YC, Chang HH, Mou Y, (Chi P), Chan JC, Luo SC (2014-08) Protein expression and purification 100, 26-32 “Purification of recombinant nacre-associated mineralization protein AP7 fused with maltose-binding protein.”
  10. Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, (Chi P) (2014-01) NUCLEIC ACIDS RESEARCH 42(1), 349-358 “Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex”
  11. Zhao W, Saro D, Hammel M, Kwon Y, Xu Y, Rambo RP, Williams GJ, (Chi P), Lu L, Pezza RJ, Camerini-Otero RD, Tainer JA, Wang HW, Sung P (2014-01) NUCLEIC ACIDS RESEARCH 42(2), 906-917 “Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing”
  12. Wilson MA, Kwon Y, Xu Y, Chung WH, (Chi P), Niu H, Mayle R, Chen X, Malkova A, Sung P, Ira G (2013-10) Nature 502(7471), 393-396 “Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration.”
  13. Busygina, V., Gaines, W.A., Xu, Y., Kwon, Y., Williams, G.J., Lin, S.W., Chang, H.Y., (Chi, P.), Wang, H.W., and Sung, P (2013-09) DNA REPAIR 12(9), 707-12 “Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1”
  14. Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, (Chi P). (2012-08) Nucleic acids research 40(14), 6558-69 “Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex.”
  15. Chen CH, Chu PC, Lee L, Lien HW, Lin TL, Fan CC, (Chi P), Huang CJ, Chang MS (2012) PloS one 7(3), e33538 “Disruption of Murine mp29/Syf2/Ntc31 Gene Results in Embryonic Lethality with Aberrant Checkpoint Response.”
  16. (Chi P), Kwon Y, Visnapuu ML, Lam I, Santa Maria SR, Zheng X, Epshtein A, Greene EC, Sung P, Klein HL (2011) Nucleic acids research 39(15), 6511-22 “Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors.”
  17. Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, (Chi P), Prakash R, Seong C, Liu D, Lu L, Ira G, Sung P (2010) Nature 467(7311), 108-11 “Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae.”
  18. (Chi P), Kwon Y, Moses DN, Seong C, Sehorn MG, Singh AK, Tsubouchi H, Greene EC, Klein HL, Sung P (2009) DNA repair 8(2), 279-84 “Functional interactions of meiotic recombination factors Rdh54 and Dmc1.”
  19. Robertson RB, Moses DN, Kwon Y, Chan P, (Chi P), Klein H, Sung P, Greene EC (2009) Proceedings of the National Academy of Sciences of the United States of America 106(31), 12688-93 “Structural transitions within human Rad51 nucleoprotein filaments.”
  20. Robertson RB, Moses DN, Kwon Y, Chan P, Zhao W, (Chi P), Klein H, Sung P, Greene EC (2009) Journal of molecular biology 388(4), 703-20 “Visualizing the disassembly of S. cerevisiae Rad51 nucleoprotein filaments.”
  21. Kwon Y, Seong C, (Chi P), Greene EC, Klein H, Sung P (2008) Journal of biological chemistry 283(16), 10445-52 “ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54.”
  22. Seong C, Sehorn MG, Plate I, Shi I, Song B, (Chi P), Mortensen U, Sung P, Krejci L (2008) Journal of biological chemistry 283(18), 12166-74 “Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52.”
  23. Prasad TK, Robertson RB, Visnapuu ML, (Chi P), Sung P, Greene EC (2007) Journal of molecular biology 369(4), 940-53 “A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops.”
  24. (Chi P), San Filippo J, Sehorn MG, Petukhova GV, Sung P (2007) Genes & development 21(14), 1747-57 “Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase.”
  25. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, (Chi P), Janscak P, Jasin M, Vogel H, Sung P, Luo G (2007) Genes & development 21(23), 3073-84 “RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments.”
  26. Kwon Y, (Chi P), Roh DH, Klein H, Sung P (2007) DNA repair 6(10), 1496-506 “Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling.”
  27. San Filippo J, (Chi P), Sehorn MG, Etchin J, Krejci L, Sung P (2006) Journal of biological chemistry 281(17), 11649-57 “Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide.”
  28. (Chi P), Van Komen S, Sehorn MG, Sigurdsson S, Sung P (2006) DNA repair 5(3), 381-91 “Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function.”
  29. (Chi P), Kwon Y, Seong C, Epshtein A, Lam I, Sung P, Klein HL (2006) Journal of biological chemistry 281(36), 26268-79 “Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA.”
  30. Raschle M, Van Komen S, (Chi P), Ellenberger T, Sung P (2004) Journal of biological chemistry 279(50), 51973-80 “Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54.”
  31. Chi WJ, Doong SL, Lin-Shiau SY, Boone CW, Kelloff GJ, Lin JK (1998) Carcinogenesis 19(12), 2133-8 “Oltipraz, a novel inhibitor of hepatitis B virus transcription through elevation of p53 protein.”

Our Interests

Our laboratory is interested in deciphering the functional and mechanistic role of homologous recombination in biology.

The Biology of Homologous Recombination

Homologous recombination (HR) governs genomic transactions. It represents a major chromosome repair tool that helps to eliminate deleterious lesions such as DNA double strand breaks (DSBs), mediate the restart of stalled or collapsed DNA replication forks, ensure proper meiotic chromosome segregation, as well as to maintain the length of telomeres in some circumstances (Fig. 1). As such, HR is indispensable for the maintenance of genome integrity. Studies in the past have provided compelling evidence for a tumor suppression role of HR. For instance, cell lines from familial breast cancer patients that harbor mutations in BRCA2 exhibit hypersensitivity to DNA damaging agents and a pronounced deficiency in HR. Aside from its genome maintenance and tumor suppression functions, HR also serves more specialized roles in various organisms, such as mating type switching in the budding yeast and V(D)J recombination in the immune system. In summary HR play an essential role in biology and dysregulation of HR causes severe disease such as cancer.

Homologous Recombination Pathway

HR is often induced via the formation of DSBs, which leads to the nucleolytic processing of DSB ends to generate 3′ single-stranded DNA (ssDNA) tails. Herein, the 3′ single-stranded tail associates with recombinases to form a nucleoprotein filament, which is then activated to invade a homologous duplex DNA molecule to form a displacement loop or D-loop. The 3′ invading strand is extended by DNA synthesis, followed by the pairing of the non-invading 3′ single-stranded tail with the homologous ssDNA strand in the enlarging D-loop (second end capture). The now paired second 3′ end is also extended by DNA synthesis and subsequent ligations generate a double Holliday Junction (dHJ) intermediate. Resolution of the dHJ intermediate can result in crossover or non-crossover recombinant products (Fig. 2). In summary, the HR pathway is constituted by a sequence of events that involve (1) DSBs formation; (2) end resection to create 3′ overhang ssDNA; (3) assembly of recombinase onto ssDNA; (4) D-loop mediated DNA synthesis; and (5) formation & resolution of dHJ intermediate.

Positions Held
  • 2019 – present   Professor, Institute of Biochemical Sciences, National Taiwan University
  • 2018 – present   Joint Appointment Associate Research Fellow, Institute of Biological Chemistry, Academia Sinica
  • 2014 – 2019   Associate Professor, Institute of Biochemical Sciences, National Taiwan University
  • 2010 – 2014   Assistant Professor, Institute of Biochemical Sciences, National Taiwan University
  • 2011 – 2018   Joint Appointment Assistant Research Fellow, Institute of Biological Chemistry, Academia Sinica
  • 2010 – 2010   Postdoctoral Associate, Yale University
  • 2008 – 2010   Postdoctoral Fellow, The Rockefeller University
Degrees
  • 2003 – 2007   Ph.D., Molecular Biophysics and Biochemistry, Yale University
Yeh HY, Lin SW, Wu YC, Chan NL, Chi P
Scientific Reports (2017)
Su GC, Yeh HY, Lin SW, Chung CI, Huang YS, Liu YC, Lyu PC, Chi P
Nucleic Acids Res. (2016)
Chang HY, Liao CY, Su GC, Lin SW, Wang HW, Chi P
J. Biol. Chem. (2015)
Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, Chi P
Nucleic Acids Res. (2014)
Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P, Niu H, Mayle R, Chen X, Malkova A, Sung P, Ira G
Nature (2013)
Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, Chi P
Nucleic Acids Res. (2012)
Chi P, Kwon Y, Visnapuu ML, Lam I, Santa Maria SR, Zheng X, Epshtein A, Greene EC, Sung P, Klein HL
Nucleic acids research (2011)
Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, Chi P, Prakash R, Seong C, Liu D, Lu L, Ira G, Sung P
Nature (2010)
Chi P, San Filippo J, Sehorn MG, Petukhova GV, Sung P
Genes & development (2007)
Chi P, Kwon Y, Seong C, Epshtein A, Lam I, Sung P, Klein HL
J. Biol. Chem. (2006)
  1. Lee CY, Su GC, Huang WY, Ko MY, Yeh HY, Chang GD, Lin SJ, (Chi P) (2019-01) Nature Communications 10(1), 65 “Promotion of homology-directed DNA repair by polyamines.”
  2. Klein HL, Ang KKH, Arkin MR, Beckwitt EC, Chang YH, Fan J, Kwon Y, Morten MJ, Mukherjee S, Pambos OJ, El Sayyed H, Thrall ES, Vieira-da-Rocha JP, Wang Q, Wang S, Yeh HY, Biteen JS, (Chi P), Heyer WD, Kapanidis AN, Loparo JJ, Strick TR, Sung P, Van Houten B, Niu H, Rothenberg E (2019-01) Microbial cell 6(1), 65-101 “Guidelines for DNA recombination and repair studies: Mechanistic assays of DNA repair processes.”
  3. Lu CH, Yeh HY, Su GC, Ito K, Kurokawa Y, Iwasaki H*, (Chi P)*, & Li HW* (2018-10) Proc. Nat. Acad. Sci. U.S.A. 115(43), E10059-E10068 “Swi5-Sfr1 Stimulates Rad51 Recombinase Filament Assembly by Modulating Rad51 Dissociation.”
  4. Huang WY, Lai SF, Chiu HY, Chang M, Plikus M, Chan CC, Chen YT, Tsao PN, Yang TL, Lee HS, (Chi P), and Lin SJ (2017-11) Cancer Research 77(22), 6083-6096 “Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy.”
  5. Yeh HY, Lin SW, Wu YC, Chan NL, and (Chi P)*. (2017-05) Scientific Reports 7(1), 2370 “Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C.”
  6. Chao A, Chang TC, Lapke N, Jung SM, (Chi P), Chen CH, Yang LY, Lin CT, Huang HJ, Chou HH, Liou JD, Chen SJ, Wang TH, and Lai CH (2016-12) Oncotarget 7(51), 85529-85541 “Prevalence and clinical significance of BRCA1/2 germline and somatic mutations in Taiwanese patients with ovarian cancer.”
  7. Su GC, Yeh HY, Lin SW, Chung CI, Huang YS, Liu YC, Lyu PC, and (Chi P)*. (2016-07) Nucleic Acids Res. 44(13), 6242-6251 “Role of the RAD51-SWI5-SFR1 ensemble in homologous recombination.”
  8. Chang HY, Liao CY, Su GC, Lin SW, Wang HW, (Chi P) (2015-08) The Journal of biological chemistry 290(32), 19863-19873 “Functional Relationship of ATP Hydrolysis, Presynaptic Filament Stability, and Homologous DNA Pairing Activity of the Human Meiotic Recombinase DMC1.”
  9. Huang YC, Chang HH, Mou Y, (Chi P), Chan JC, Luo SC (2014-08) Protein expression and purification 100, 26-32 “Purification of recombinant nacre-associated mineralization protein AP7 fused with maltose-binding protein.”
  10. Su GC, Chung CI, Liao CY, Lin SW, Tsai CT, Huang T, Li HW, (Chi P) (2014-01) NUCLEIC ACIDS RESEARCH 42(1), 349-358 “Enhancement of ADP release from the RAD51 presynaptic filament by the SWI5-SFR1 complex”
  11. Zhao W, Saro D, Hammel M, Kwon Y, Xu Y, Rambo RP, Williams GJ, (Chi P), Lu L, Pezza RJ, Camerini-Otero RD, Tainer JA, Wang HW, Sung P (2014-01) NUCLEIC ACIDS RESEARCH 42(2), 906-917 “Mechanistic insights into the role of Hop2-Mnd1 in meiotic homologous DNA pairing”
  12. Wilson MA, Kwon Y, Xu Y, Chung WH, (Chi P), Niu H, Mayle R, Chen X, Malkova A, Sung P, Ira G (2013-10) Nature 502(7471), 393-396 “Pif1 helicase and Poldelta promote recombination-coupled DNA synthesis via bubble migration.”
  13. Busygina, V., Gaines, W.A., Xu, Y., Kwon, Y., Williams, G.J., Lin, S.W., Chang, H.Y., (Chi, P.), Wang, H.W., and Sung, P (2013-09) DNA REPAIR 12(9), 707-12 “Functional attributes of the Saccharomyces cerevisiae meiotic recombinase Dmc1”
  14. Tsai SP, Su GC, Lin SW, Chung CI, Xue X, Dunlop MH, Akamatsu Y, Jasin M, Sung P, (Chi P). (2012-08) Nucleic acids research 40(14), 6558-69 “Rad51 presynaptic filament stabilization function of the mouse Swi5-Sfr1 heterodimeric complex.”
  15. Chen CH, Chu PC, Lee L, Lien HW, Lin TL, Fan CC, (Chi P), Huang CJ, Chang MS (2012) PloS one 7(3), e33538 “Disruption of Murine mp29/Syf2/Ntc31 Gene Results in Embryonic Lethality with Aberrant Checkpoint Response.”
  16. (Chi P), Kwon Y, Visnapuu ML, Lam I, Santa Maria SR, Zheng X, Epshtein A, Greene EC, Sung P, Klein HL (2011) Nucleic acids research 39(15), 6511-22 “Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors.”
  17. Niu H, Chung WH, Zhu Z, Kwon Y, Zhao W, (Chi P), Prakash R, Seong C, Liu D, Lu L, Ira G, Sung P (2010) Nature 467(7311), 108-11 “Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae.”
  18. (Chi P), Kwon Y, Moses DN, Seong C, Sehorn MG, Singh AK, Tsubouchi H, Greene EC, Klein HL, Sung P (2009) DNA repair 8(2), 279-84 “Functional interactions of meiotic recombination factors Rdh54 and Dmc1.”
  19. Robertson RB, Moses DN, Kwon Y, Chan P, (Chi P), Klein H, Sung P, Greene EC (2009) Proceedings of the National Academy of Sciences of the United States of America 106(31), 12688-93 “Structural transitions within human Rad51 nucleoprotein filaments.”
  20. Robertson RB, Moses DN, Kwon Y, Chan P, Zhao W, (Chi P), Klein H, Sung P, Greene EC (2009) Journal of molecular biology 388(4), 703-20 “Visualizing the disassembly of S. cerevisiae Rad51 nucleoprotein filaments.”
  21. Kwon Y, Seong C, (Chi P), Greene EC, Klein H, Sung P (2008) Journal of biological chemistry 283(16), 10445-52 “ATP-dependent chromatin remodeling by the Saccharomyces cerevisiae homologous recombination factor Rdh54.”
  22. Seong C, Sehorn MG, Plate I, Shi I, Song B, (Chi P), Mortensen U, Sung P, Krejci L (2008) Journal of biological chemistry 283(18), 12166-74 “Molecular anatomy of the recombination mediator function of Saccharomyces cerevisiae Rad52.”
  23. Prasad TK, Robertson RB, Visnapuu ML, (Chi P), Sung P, Greene EC (2007) Journal of molecular biology 369(4), 940-53 “A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops.”
  24. (Chi P), San Filippo J, Sehorn MG, Petukhova GV, Sung P (2007) Genes & development 21(14), 1747-57 “Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase.”
  25. Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, (Chi P), Janscak P, Jasin M, Vogel H, Sung P, Luo G (2007) Genes & development 21(23), 3073-84 “RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments.”
  26. Kwon Y, (Chi P), Roh DH, Klein H, Sung P (2007) DNA repair 6(10), 1496-506 “Synergistic action of the Saccharomyces cerevisiae homologous recombination factors Rad54 and Rad51 in chromatin remodeling.”
  27. San Filippo J, (Chi P), Sehorn MG, Etchin J, Krejci L, Sung P (2006) Journal of biological chemistry 281(17), 11649-57 “Recombination mediator and Rad51 targeting activities of a human BRCA2 polypeptide.”
  28. (Chi P), Van Komen S, Sehorn MG, Sigurdsson S, Sung P (2006) DNA repair 5(3), 381-91 “Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function.”
  29. (Chi P), Kwon Y, Seong C, Epshtein A, Lam I, Sung P, Klein HL (2006) Journal of biological chemistry 281(36), 26268-79 “Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA.”
  30. Raschle M, Van Komen S, (Chi P), Ellenberger T, Sung P (2004) Journal of biological chemistry 279(50), 51973-80 “Multiple interactions with the Rad51 recombinase govern the homologous recombination function of Rad54.”
  31. Chi WJ, Doong SL, Lin-Shiau SY, Boone CW, Kelloff GJ, Lin JK (1998) Carcinogenesis 19(12), 2133-8 “Oltipraz, a novel inhibitor of hepatitis B virus transcription through elevation of p53 protein.”