BINDING PROTEINS ON SYNAPTIC MEMBRANES
FOR CROTOXIN AND TAIPOXIN, TWO
PHOSPHOLIPASES A₂ WITH NEUROTOXICITY

MU-CHIN TZENG,¹ CHON-HO YEN,¹ MING-JHY HSEU,¹
CHIU-CHEN TSENG,¹ MING-DAW TSAI² and CYNTHIA M. DUPUREUR²

¹Institute of Biological Chemistry, Academia Sinica, P.O. Box 23-106, Taipei, Taiwan, R.O.C.;
and ²Department of Chemistry, Ohio State University, Columbus, Ohio, U.S.A.

(Received 1 December 1993; accepted 1 March 1994)

M.-C. Tzeng, C.-H. Yen, M.-J. Hseu, C.-C. Tseng, M.-D. Tsai and C. M. Dupureur. Binding proteins on synaptic membranes for crototoxin and taipoxin, two phospholipases A₂ with neurotoxicity. Toxicon 33, 451–457, 1995.—Crototoxin and taipoxin are both neurotoxic phospholipases A₂ capable of affecting the presynaptic activity to bring about ultimate blockade of synaptic transmission. The enzymatic activity has generally been considered to be necessary but not sufficient for the blockade. Since many phospholipases A₂ with comparable or even higher enzymatic activity are not toxic, it has been postulated that the difference lies in the affinity of binding to the presynaptic membrane. In confirmation of this proposition, we and others have previously shown that iodinated crototoxin and taipoxin bind specifically with high affinity to the isolated synaptic membrane fraction from guinea-pig brain, whereas specific binding is not detected with the nontoxic pancreatic phospholipase A₂. Experiments based on photoaffinity labeling and simple chemical cross-linking techniques have led to the identification of three polypeptides preferentially present in neuronal membranes as (subunits of) the binding protein(s) for crototoxin and/or taipoxin. Some, but not all, other toxic phospholipases A₂ also appear to be ligands for the three polypeptides. We now report studies on partial purification of these polypeptides using affinity chromatography and other techniques. In order to learn the normal physiological roles played by the toxin-binding proteins, the phospholipase-independent effects of the toxins on the synaptosomes have been sought. We have found that under Ca²⁺-free condition, taipoxin or crototoxin inhibits with IC₅₀ of 20–1000 nM the Na⁺-dependent uptake of norepinephrine, dopamine and serotonin by the synaptosomes. In contrast, choline uptake is not affected. Furthermore, the high-affinity site for [³H]desipramine binding, known to be the norepinephrine transporter, is inhibited with an IC₅₀ of 14 nM by taipoxin independent of phospholipase activity. These results are strong indications that certain synaptosomal biogenic amine transporters are part of the binding proteins for taipoxin and crototoxin. Chemical modification at Tyr-21 of the phospholipase subunit of crototoxin greatly reduces the neurotoxicity and the binding affinity with little effect on the enzymatic activity of the toxin. Hence, Tyr-21 may be an important residue for the binding of crototoxin and perhaps other
phospholipase A₂ neurotoxins. Even stronger evidence comes from the finding that replacement of the corresponding Phe residue of bovine pancreatic phospholipase A₂ with Tyr by site-directed mutagenesis enables it to compete with an IC₅₀ of 1 µM for the binding of [¹²⁵]Icrotosin, contrasting sharply with the complete lack of such ability with the wild type even at 50 µM. In addition, rat phospholipase A₂, which has a corresponding Tyr residue, can inhibit the binding of [¹²⁵]Icrotosin.

INTRODUCTION

Crotosin and taipoxin, among others, are phospholipases A₂ (PLA₂) with presynaptic neurotoxicity, although most of them also show postsynaptic toxicity and other effects. These presynaptic toxins differ in their subunit organizations, but in every case, a PLA₂ of 12,000–16,000 mol. wt is present. Crotosin from the venom of the South American rattlesnake Crotalus durissus terrificus is composed of two subunits, subunit A (acidic) of 9000 mol. wt, and subunit B (basic) of 14,400 mol. wt, with PLA₂ activity (Slotta and Fraenkel-Conrat, 1938; Rubsam et al., 1971; Hendon and Fraenkel-Conrat, 1971). Taipoxin from the taipan Oxyuranus scutellatus is made up of three subunits with mol. wts of 13,500, 13,750 and 18,350, each having a sequence homologous to that of pancreatic PLA₂ (Fohlman et al., 1976, 1977). At the neuromuscular junction, the effects in the early stages vary with the toxins and experimental conditions, an initial decrease in transmission followed by a transient increase being observed with crotosin and with taipoxin. But the blockade of transmission in the final stage is common to these presynaptic toxins and is the underlying cause of their neurotoxicity (Tzeng, 1993; Harris, 1991; Hawgood and Bon, 1991; Harvey, 1990; Rosenberg, 1990). As all known toxic PLA₂s are from snake venoms, most of the many pharmacological studies of these toxins were done on the peripheral tissues with the consideration that in snakebites the toxins do not reach the brain because of the blood–brain barrier. However, when injected directly into the brain or tested on isolated preparations, the neurotoxic PLA₂s showed high degrees of toxicity (Hanley and Emson, 1979; Halliwell and Dolly, 1982a, b; Othman et al., 1982; Rehm et al., 1982; Rehm and Betz, 1982; Ling et al., 1988; Lambeau et al., 1989).

Based on many studies, the PLA₂ activity has generally been considered to be a necessary condition for the blocking effect of these toxins under normal situations. In addition, several of the PLA₂ presynaptic toxins, including crotosin and taipoxin, have been shown to bind specifically with high affinity to the membrane fractions rich in synaptic regions, while specific binding was not detectable with the nontoxic pancreatic PLA₂ (Othman et al., 1982; Rehm and Betz, 1982; Lambeau et al., 1989; Yang and Tzeng, 1983; Tzeng et al., 1986; Degn et al., 1991). Three polypeptides preferentially present in neuronal membranes have been identified as (subunits of) the binding protein(s) for crotosin and/or taipoxin by photoaffinity labeling and chemical cross-linking techniques (Tzeng et al., 1986, 1989; Hseu et al., 1990; Yen and Tzeng, 1991).

Previous chemical modification studies with p-bromophenacyl bromide and other reagents have established the importance of His-48 and other residues in the catalytic activity of PLA₂s. We consider it also of interest to determine the residues required for the binding of the PLA₂ neurotoxins to their targets.

Apparently the cell produces the toxin-binding proteins for some other purpose. It may be reasoned that strong binding of the toxins to the synaptic membrane alone will affect
the physiological functions of the toxin-binding proteins without the participation of the enzymatic reaction. We have therefore investigated the phospholipase-independent action of crototoxin and taipoxin on the functioning of the synaptosomes.

MATERIALS AND METHODS

Neurotoxicity assay
The chick biventer cervicis nerve–muscle preparation (Ginsborg and Warriner, 1960) was used to test the neurotoxicity of purified toxins. The muscle was incubated in Tyrode's solution gassed with 95% O₂/5% CO₂ continuously. The nerve was stimulated with supramaximal rectangular pulses of 0.05 msec at 0.2 Hz and isometric contraction recorded with a polygraph.

Protein modification
Modification with p-nitrobenzenesulfonyl fluoride was carried out in 0.1 M Tris–HCl, pH 8.0, at 25°C for 60 min (Liao et al., 1982). The modified proteins were separated from the unmodified by a Synchropak RP column with a gradient of 24–48% acetonitrile. The proteins were reduced by dithiothreitol, carboxymethylated by iodoacetic acid, and then fragmented by TPCK–trypsin. The peptides generated by proteolytic cleavage were separated by HPLC with a Synchropak column with a gradient of 0–40% acetonitrile. Pertinent fragments were selected for amino acid sequence determination by a sequencer.

Cross-linking of [125I]crototoxin with membrane components
Crototoxin labeled with 125I by the chloramine-T method was mixed with the synaptic membrane preparation from guinea-pig brain in the presence or absence of other unlabeled PLA₂ at 25°C for 2.5 hr. The membrane was pelleted down, washed and resuspended. Disuccinimidyl suberate (DSS) was added and the mixture incubated for 4 min at 25°C. The reaction was stopped by adding 1 N glycine. The membrane pellet was recovered and analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by autoradiography.

Solubilization and purification of the crototoxin-binding proteins
The synaptic membrane fraction from guinea-pig brain was suspended in solution A (10 mM Tris–HCl, pH 7.4, 0.15 M NaCl, 10 mM SrCl₂, 0.5 mM EGTA) containing 4% Triton X-100. After agitation at 4°C for 2 hr, the mixture was centrifuged at 105,000 × g for 1 hr at 4°C. The resulting supernatant was fractionated by gel filtration with a Sepharose 6B column. The eluate was assayed for [125I]crototoxin-binding activity. The active fractions were pooled and further purified by affinity chromatography with crototoxin coupled to CNBr-activated Sepharose 4B.

Binding assay
To measure the binding activity of the solubilized preparations, each sample was mixed with [125I]crototoxin in solution A. Parallel incubation containing excess unlabeled crototoxin in addition was carried out in order to determine nonspecific binding. The mixtures were incubated for 2.5 hr at 30°C. The bound [125I]crototoxin was separated from the unbound by a rapid gel filtration method with Sephadex G-75.

Neurotransmitter uptake by the synaptosomes
Synaptosomes (Whittaker, 1959) were suspended in Sr²⁺-Tyrode solution of the following composition (mM): NaCl 137; NaHCO₃ 12; MgCl₂ 1.0; KCl 2.7; NaH₂PO₄ 0.6; glucose 11; Sr(NO₃)₂ 3.8; EGTA 0.5, equilibrated with 95% O₂/5% CO₂. Incubations were performed at 37°C in the presence or absence of specified concentrations of toxins. Tritiated norepinephrine, dopamine, serotonin, or choline was then added. After an additional 6 min incubation, the mixture was diluted with ice-chilled Sr²⁺-Tyrode solution and the synaptosomes were collected on Whatman GF/F filters. After washing, the radioactivity trapped by the filters was measured by liquid scintillation counting.

Desipramine binding
Guinea-pigs were decapitated and each cerebral cortex was homogenized in 20 ml of ice-chilled assay buffer (composition, in mM: Tris–HCl 50; NaCl 120; KCl 5; Sr(NO₃)₂ 10; EGTA 0.5; pH 7.4) using a Kinematica polytron homogenizer. The brain homogenates were incubated with 1.5 nM [3H]desipramine and specified concentrations of taipoxin in the assay buffer for 2 hr at 0°C. Then the mixture was diluted with ice-chilled assay buffer and filtered through Whatman GF/F filters. After washing, the radioactivity on each filter was measured.
RESULTS AND DISCUSSION

The subunit B of crotoxin (CXB) was modified with iodoacetate, phenylglyoxal, p-nitrobenzenesulfonyl fluoride, or trinitrobenzenesulfonic acid. Among these modifications, only the one with p-nitrobenzenesulfonyl fluoride, which modifies Tyr residues, impaired the ability of binding to the synaptic membrane as judged from the effectiveness (or lack of it) of the modified proteins to inhibit the binding of 125Icrotoxin. Hence, this modification was chosen for more detailed studies.

After reacting with p-nitrobenzenesulfonyl fluoride, the modified proteins were separated by a reversed-phase HPLC column into fractions modified to different extents. When the whole crotoxin complex was subjected to the modification reaction, Tyr-72 of CXB was the residue most readily modified, as determined by peptide sequence analysis after separating the modified toxin subunits from the unmodified. When the above modified CXB was compared with the unmodified for PLA$_2$ activity, neurotoxicity and the affinity for binding to synaptosomal membranes, only small changes (2–24%) were observed. Then the CXB was modified further, and analyses after separation of the reaction products showed that there were parallel and drastic reduction in neurotoxicity and in binding activity when two residues were modified, and virtually complete loss of both when three residues were modified. In sharp contrast, the phospholipolytic activity was largely retained. These results demonstrate again that PLA$_2$ activity alone is not sufficient for the toxicity of crotoxin and provide additional evidence for the necessity of strong binding to membranes. Amino acid sequence determination following peptide mapping of tryptic digest revealed that Tyr 21, 24 and/or 27 (all in the same peptide fragment of residues 16–33 with the sequence of NAIPFYAFYGCYCGWGGR) were the one(s) modified. From these results, we may deduce that Tyr-21, Tyr-24 or Tyr-27 is an important determinant for the binding of CXB to its target protein(s). Since Tyr-24 and 27 (25 and 28 in alignment number) are conserved for all of the PLA$_2$ s sequenced to date, whether toxic or not, and Tyr-21 (22 in alignment number) is found in the neurotoxic PLA$_2$ s but not in the great majority of the nontoxic PLA$_2$ s, we consider that Tyr-21 is the more important one. Additional evidence below lends even stronger support for the importance of Tyr-21 in binding. However, there are certainly other determinants important for binding. This may well be the reason why some of the PLA$_2$ s with Tyr-21/22 are not neurotoxic.

Covalent attachment of 125I[CXB to the synaptic membrane preparation by the chemical cross-linker disuccinimidyl suberate yields a 60,000 mol. wt conjugate, as reported previously (Yen and Tzeng, 1991). The formation of this radioactive conjugate was completely suppressed by the presence of sufficient F22Y, a mutant bovine pancreatic PLA$_2$ generated by site-directed mutagenesis of Phe-22 of the wild-type to Tyr, in the binding stage of the experiment. The I_C_{50} was estimated to be \sim1 μM from the dose–response curve. In sharp contrast, no effect was observed with the wild-type even at 50 μM, the highest dose used. The enzymatic activity was not changed by this mutation and NMR analysis ascertained that the conformations of the mutant and the wild-type were virtually identical. Somewhat later we became aware that residue 22 of the rat pancreatic PLA$_2$ is Tyr. There is good reason to expect that the rat enzyme will behave like the F22Y mutant above. After purification of the rat PLA$_2$, examination of its ability to nullify the conjugation of 125I[CXB to the membrane component fully supports this prediction. These results demonstrate again the importance of Tyr-21/22 in the binding to membrane protein. Site-directed mutagenesis of the crotoxin subunit B is being carried out to gain more information about the residues involved in binding.
In order to solubilize the binding proteins for crototoxin and taipoxin, the synaptic membrane fraction from guinea-pig brain was extracted with detergents. The extracts were then incubated with $[^{125}]$crototoxin in the absence or the presence of unlabeled crototoxin and assayed for binding of $[^{125}]$crototoxin using a gel filtration procedure. When a buffer containing 4% Triton X-100 was used, the crototoxin-binding proteins were found to be solubilized and in biologically active form. The affinity of the solubilized proteins for $[^{125}]$crototoxin was unimpaired by solubilization, judging by the IC_{50} of 7 nM for the inhibition of the binding of $[^{125}]$crototoxin to the detergent extract by the unlabeled crototoxin. After binding complexes of $[^{125}]$crototoxin and its binding proteins had formed, chemical cross-linking with disuccinimidyl suberate resulted in a predominant band of conjugation with a mol. wt of approx. 60,000, similar to the result of cross-linking with synaptic membrane fragments. Following gel filtration with Sepharose 6B, affinity chromatography with crototoxin coupled to Sepharose 4B was carried out to purify the crototoxin-binding proteins. Binding activity for $[^{125}]$crototoxin was desorbed by eluting with 50 mM Tris–HCl, pH 7.4, 10 mM EDTA, 50 mM NaCl, and 0.2% Triton X-100. When this eluate was analyzed by SDS–PAGE, only three major bands, presumably proteins, were found under reducing condition, the mol. wts being 87,000, 65,000 and 50,000. Additional steps are necessary to achieve complete purification of the crototoxin-binding proteins.

In Ca$^{2+}$-free, Sr$^{2+}$-containing Tyrode solution, taipoxin caused a marked inhibition of the synaptosomal Na$^{+}$-dependent uptake of tritiated norepinephrine (NE), dopamine (DA) and serotonin (5-HT) with IC_{50} of 20, 100 and 500 nM, respectively. In sharp contrast, taipoxin showed very little if any effect on choline uptake into brain synaptosomes under Ca$^{2+}$-free conditions. Suppression of the uptake of tritiated NE, DA, and 5-HT was also observed with crototoxin, IC_{50} being 1 µM, 0.3 µM, and 0.5 µM, respectively, under the same condition. Again, choline uptake was not affected. For comparison, β-bungarotoxin (also a neurotoxic PLA$_2$) has been reported to cause Ca$^{2+}$-dependent inhibition of synaptosomal uptake of choline, but not NE (Werniche et al., 1974; Sen et al., 1976), and our own data have confirmed these observations. Hence, the Ca$^{2+}$-independent inhibitions of NE, DA and 5-HT uptake are not shared by all toxic PLA$_2$s.

Desipramine has been known to be a blocker of the NE transporter (Lee and Snyder, 1981; Backstrom et al., 1989). According to the literature, two specific binding sites for $[^{3}H]$desipramine exist, the IC_{50} being 1 nM and 600 nM for the high-affinity and the low-affinity sites, respectively. The high-affinity site resides on the NE transporter. Our experiments showed that the high-affinity, but not the low-affinity, site for desipramine binding was inhibited by taipoxin with an IC_{50} of 14 nM.

In order to avoid unwanted perturbations of the synaptosomes by the PLA$_2$ action of the toxins, we used a medium containing Sr$^{2+}$, EGTA and no Ca$^{2+}$ in the experiments concerning the inhibition of $[^{3}H]$desipramine binding and performed the experiments near 0°C. In the synaptosomal uptake experiments, it is impractical to operate near 0°C, but it is still workable to include EGTA and replace Ca$^{2+}$ with Sr$^{2+}$ in the incubation solution. We have tested taipoxin and crototoxin under the Sr$^{2+}$-EGTA (Ca$^{2+}$-free) condition for PLA$_2$ activity, and none was detected. Furthermore, the synaptosomes appeared to be intact at the end of the experiments as judged from the retention of lactate dehydrogenase identical to control. The integrity of the synaptosomes was further assured by the lack of effect by taipoxin and crototoxin on choline uptake. Therefore, it is reasonable to conclude that the observed effects of taipoxin and crototoxin in the present study do not require the PLA$_2$ activity of the toxins, since the enzymatic reaction did not occur to any significant degree.
In order to find clues about the physiological roles played by the unliganded binding proteins for the neurototoxic PLA₂ in the normal functioning of the neuron, we believe that the search for the phospholipase-independent action of the toxins should be promoted. Working along this line, we have obtained reliable results to indicate strongly that some biogenic amine transporters in the synaptic membranes are the major binding proteins for taipoxin and crototoxin. This is the first report of the phospholipase-independent actions of taipoxin and crototoxin and the first of the phospholipase-independent effects on biogenic amine transport systems for any neurototoxic PLA₂.

Acknowledgement—This work was supported in part by grants from the National Science Council, R.O.C., to M.-C. Tzeng (NSC80-0203-B001-07 and NSC81-0211-B001-07).

REFERENCES

