Mechanism of Adenylate Kinase. 10. Reversing Phosphorus Stereoselectivity by Site-Directed Mutagenesis

Ru-Tai Jiang, Terri Dahneke, and Ming-Daw Tsai*

Department of Chemistry and Ohio State Biochemistry Program
The Ohio State University, Columbus, Ohio 43210
Received April 17, 1991

The stereoselectivity toward different diastereomers of nucleoside phosphorothioates is a well-established property for many enzymes and has been useful in many research areas of biochemistry and molecular biology. A typical example is shown in Figure 1A for adenylate kinase (AK): when AMP is substituted by AMPS, phosphorylation occurs at the pro-R oxygen specifically to give (S)-ADPαS, the latter can be further converted to (S)-ATPαS since the S isomer is also preferred over the R isomer at the MgATP site.

Such stereospecificity (not the steric course, which is a different issue) should arise from restricted orientations of the P-O and P-S bonds at the active site, so that the unnatural sulfur atom assumes the position "least painful" to the enzyme. The exact orientations depend on the combined effects of the interactions between the phosphorothioate group and the active-site residues and/or the metal ion. It has been established that changing the metal ion could perturb the stereoselectivity. We predict that removal of one of such interactions by site-directed mutagenesis can also change the overall interactions and potentially perturb the stereoselectivity.

We tested our prediction using AK from chicken muscle overproduced in Escherichia coli. Recently we found that substitution of Arg-44 by Met (to give the R44M AK) resulted in 36-fold and 22-fold increases in the Michaelis and the dissociation constants, respectively, of AMP but not MgATP, and only a 3-fold decrease in kcat. After detailed structural analysis to ensure that the conformation of the mutant AK had not been perturbed, we concluded that Arg-44 interacts specifically with AMP starting from the hairpin complex. Although the kinetic results do not reveal how Arg-44 interacts with AMP, the positively charged arginine is likely to interact with the negatively charged phosphate, as also suggested by the crystal structure of a yeast AK-inhibitor complex.

Using 31P NMR, we monitored the conversion of AMPS to ADPαS (at the AMP site) and its subsequent conversion to ATPαS (at the MgATP site). As shown in Figure 2A, the products from wild-type (WT) AK are mainly the S isomers of both ADPαS and ATPαS. Separate experiments using R44M AK confirmed that the S isomer is indeed preferred over the R isomer at the MgATP site. Thus chicken muscle AK behaves like other types of AK in the stereoselectivity at the Pα site of both AMP and MgATP.

As shown in Figure 2B, the stereoselectivity at the AMP site is completely reversed in the reaction catalyzed by R44M AK since the product is mainly (R)-ADPαS. The fact that no ADPαS formed in Figure 2B suggests that the stereoselectivity at the Pα site of the MgATP site has not changed. This was further confirmed by addition of (R)+S-ADPαS to the sample, which resulted in specific conversion of the S isomer to (S)-ATPαS (Figure 2, C and D). The stereoselectivity of the reactions catalyzed by R44M is shown in Figure 1B. Although we have predicted a change in stereoselectivity, it was surprising that the change was not to relax the stereoselectivity, and fortuitous that it was not to enhance the existing stereoselectivity.

Figure 1. Schemes showing the stereoselectivity of wild-type adenylate kinase (A) and R44M (B). As implied by the schemes, the orientation of the acceptor oxygen of AMPS should not change, and the reversal in stereoselectivity is likely to be due to a rotation in the bridging O-P bond.

To whom correspondence should be addressed at Department of Chemistry, The Ohio State University, 120 W. 18th Ave., Columbus, OH 43210.

(1) Supported by Research Grant DMB-8904727 from the NSF. Paper 9 in the series: Yan, H.; Tsai, M.-D. Biochemistry 1991, 30, 5539-5536. Abbreviations: ADP, adenosine 5'-diphosphate; ADPαS, adenosine 5'-([1]-thiodiphosphate); AK, adenylate kinase; AMP, adenosine, 5'-monophosphate; AMPS, adenosine 5'-monothiophosphate; ATP, adenosine 5'-triphosphate; ATPαS, adenosine 5'-([1]-thiodiphosphate); WT, wild-type.

Since the stereospecificity in the present case is a kinetic phenomenon, it is important to follow the time course of the reaction. Otherwise complication could arise from equilibrium effects. For example, further incubation of the sample of Figure 2D resulted in the conversion of the R_p isomer of ADPαS to the S_p isomer of ATPαS (Figure 2E), apparently via back reaction to AMPS and transient formation of (S_p)-ADPαS. Also, the stereospecificity should not be considered to be 100%. In Figure 2A, for example, a small amount of (R_p)-ADPαS (ca. 15% of total ADPαS, or ca. 8% of total products) can also be detected.

Overall, our results are significant in several aspects: (a) Site-directed mutagenesis can be used to manipulate the P-stereospecificity of enzymes and produce useful diastereomers of phosphorothioates. In the present case, R44M provides a direct way to synthesize pure (R_p)-ADPαS from AMPS, which is simpler than the previously available procedure of chemically synthesizing (R_p+S_p)-ADPαS followed by enzymatic removal of the S_p isomer. (b) A reversal, or a significant perturbation in the stereospecificity, is strong evidence that the mutated residue interacts with the phosphorothioate group. The results in this work unequivocally establish that Arg-44 interacts with the phosphoryl group of AMP during the catalytic reaction. Such delineation of the functional role of an active-site residue is a step forward from direct interpretation of the static crystal structure or the kinetic data of mutant enzymes. (c) In-depth investigation of various systems can enhance our understanding of the chemical basis of enzymatic catalysis and the biological effects of phosphorothioates.

Figure 2. 31P NMR analysis (at 121.5 MHz) of stereospecificity at neutral pH. Only the regions of the P_p resonances are shown. The starting reaction mixture (2 mL) consisted of 22 mM AMPS, 75 mM ATP, 45 mM Mg(NO$_3$)$_2$, and ca. 0.04 mg of WT or ca. 0.4 mg of R44M, in a 50 mM Tris buffer containing 50 mM KCl and 2.5 mM EDTA, pH 7.8. The temperature in the NMR probe was 30 °C (A) WT AK, at 4 h (midpoint of acquisition) after addition of the enzyme; (B) R44M, 2 h; (C) addition of ADPαS (R_p/S_p = 1:2) to B, 4 h; (D) continuation of C, 9 h; (E) continuation of D, 70 h. The free induction decay was acquired with broad-band decoupling and processed with 0.5- or 1-Hz exponential multiplication. The chemical shifts are referenced to external 85% H$_3$PO$_4$. The right half of the doublet of (S_p)-ATPαS overlaps with the singlet of AMPS. The position of (R_p)-ATPαS should be upfield from AMPS. The relative chemical shifts agree with the values reported previously12 (the absolute values are sensitive to pH and buffer conditions).