CHAPTER 6

Use of Chiral Thiophosphates and the Stereochemistry of Enzymatic Phosphoryl Transfer

Ming-Daw Tsai
Department of Chemistry
The Ohio State University
Columbus, Ohio

I. Stereochemical Problems Studied with Phosphorothioates 175
II. 31O Isotope Shifts in 31P NMR 178
III. 31O Quadrupolar Effects in 31P NMR 181
IV. Prochiral Centers: 31P NMR 185
V. Pro-Prochiral Centers: 31P(31O) NMR or 31P(17O) NMR 187
VI. Pro-Pro-Prochiral Centers: 31P(31O) NMR and 31P(17O) NMR 190
References 196

I. Stereochemical Problems Studied with Chiral Thiophosphates

The use of thiophosphate analogs of biophosphates in studying stereochemical problems was first introduced by Eckstein (1975) and subsequently widely applied to various problems. To illustrate the use of chiral thiophosphates in stereochemistry, consider the phosphoryl transfer reaction catalyzed by hexokinase (Scheme 1).1 Three types of problems can be studied by

\[
\text{Glucose} - 5\text{-O-PO} - \text{O-P-O-P-OAd} \rightleftharpoons \text{O-P-O-P-O-P-OAd} + \text{Glucose}
\]

Scheme 1

1 To avoid confusion, the charges and double bonds on the oxygen and sulfur of phosphoryl group or thiophosphoryl groups are omitted throughout the text. The R and S configurational designations are made according to the Cahn-Ingold-Prelog rule (Cahn et al., 1966), with the assumption that nonbridging oxygens and sulfurs are all singly bonded to phosphorus. According to the priority rules, the atomic number preferences should be applied to exhaustion before the atomic weight preferences are applied.
use of chiral thiophosphates:

1. Stereochemistry of the substitution at phosphorus (retention, inversion, or nonstereospecificity) can be investigated by use of chiral \(^{18}\text{O} \)thiophosphoryl groups (Scheme 2).

\[
\text{Glucose-6-O-P-O} + \text{ADP} \rightleftharpoons \text{Glucose-6-O-P-O-P-O-Ad} \text{ or } \text{Glucose-6-O-P-O-P-Ad}
\]

Scheme 2

2. By use of ADP\(\beta\)S, the \(\text{P}_\beta\) of ADP becomes a prochiral center. In principle, enzymes can distinguish the two diastereotopic oxygens. Therefore, the phosphorylation may be stereospecific (Scheme 3).

\[
\text{Glucose-6-}\text{O} + \text{ADP}\beta\text{S} \rightleftharpoons \text{Glucose-6-O-P-O-P-Ad} \text{ or } \text{Glucose-6-O-P-P-Ad}
\]

Scheme 3

3. By use of ADP\(\alpha\)S, the \(\text{P}_\alpha\) of ADP becomes a chiral center, and there are two possible isomers. Even though the \(\alpha\)-phosphate of ADP is not directly involved in the reaction, the enzyme may be specific to one of the two isomers (Scheme 4).

\[
\text{Glucose-6-}\text{O} + \text{ADP}\alpha\text{S} \rightleftharpoons \text{Glucose-6-O-P-O-P-Ad} \text{ or } \text{Glucose-6-O-P-P-Ad}
\]

Scheme 4

not authentic. However, so far there has not been an example found in which the stereochemical result obtained with chiral phosphates (see Gerlt, Chapter 7) is different from that obtained with chiral thiophosphates.

The biochemical applications of thiophosphates have been covered in a number of reviews (Eckstein, 1979; Eckstein et al., 1982; Frey, 1982; Frey et al., 1982; Knowles, 1980; Buchwald et al., 1982; Tsai, 1982). The purpose of this chapter is to illustrate the use of \(^{31}\text{P} \) NMR\(^3 \) in these problems, which is based on three factors:

1. When a prochiral center becomes a chiral center because of sulfur substitution, the resultant two diastereomers give different \(^{31}\text{P} \) chemical shifts.
2. Substitution of an oxygen by \(^{18}\text{O} \) causes an isotope shift in \(^{31}\text{P} \) NMR.
3. Substitution of an oxygen by \(^{17}\text{O} \) causes a quadrupolar broadening on the \(^{31}\text{P} \)-NMR signal.

Phosphorus-31 NMR is not the only method available for some problems, and this chapter does not intend to provide a comprehensive review of all chiral thiophosphate work.

\(^2\) Abbreviations used: \(\Theta \), \(^{16}\text{O} \), \(^{17}\text{O} \), \(^{18}\text{O} \); \(\beta \), inorganic phosphate; \(\text{P}_\beta \), inorganic thiophosphate; AMP; adenosine 5'-monophosphate; ADP, adenosine 5'-diphosphate; ATP, adenosine 5'-triphosphate; AMPS, adenosine 5'-monophosphate; ADP\(\beta\text{S} \), adenosine 5'-thiophosphate; ADP\(\alpha\text{S} \), adenosine 5'-thiophosphate; GMP, guanosine 5'-monophosphate; GTP, guanosine 5'-diphosphate; GDP, guanosine 5'-triphosphate; UMP, uridine 5'-monophosphate; UDP, uridine 5'-diphosphate; UTP, uridine 5'-triphosphate; UDP, uridine 5'-diphosphate; UTP, uridine 5'-triphosphate; DPP, dipalmitylthioinositophosphatidylcholine; DPP, dipalmitylthioinositophosphatidylcholine; EDTA, ethylenediaminetetraacetic acid.

\(^3\) The \(^{31}\text{P} \) chemical shifts described in this chapter are referenced to either 85% \(\text{H}_2\text{PO}_4 \) or 1 M \(\text{H}_2\text{PO}_4 \) as used in original references, which are different by only 0.3 ppm. The \(+ \) sign always represents a downfield shift in this chapter, although the opposite convention has been used in most of the original references. It should be noted that the \(^{31}\text{P} \) chemical shifts of most thiophosphates are sensitive to pH, concentration, temperature, etc. In many cases the relative shifts are more important than the absolute chemical shifts.
II. 18O Isotope Shifts in 31P NMR

Figure 1 shows the 31P-NMR spectrum of H$_3$P17O$_4$ (40 atom % 17O). The spectrum consists of a "broad" signal owing to the 31P-17O species and a "sharp" signal owing to the residual non-17O-labeled species. Because 17O-enriched water always contains some 18O (18O/17O = 0.67 in this case), the sharp signal contains both 18O and 17O species, as shown by the expanded spectrum in the inset. In this compound, the 31P-NMR signal of the 18O-labeled species is shifted upfield by 0.020 ppm per 18O atom.

The 18O isotope-shift effect in 31P NMR ($S_{^{18}O-^{17}O}$) was first reported by Cohn and Hu (1978) and others (Low and Sproat, 1978; Lutz et al., 1978). Cohn (1982) and Tsai and Bruzik (1983) have summarized the magnitudes of $S_{^{18}O-^{17}O}$ for a number of biophosphates. Table I lists the S values for commonly used biophosphates, thiophosphates, and some model compounds. Because the data are collected from various reports that have different spectral resolution, some of the data in Table I may have an error of $\pm 10\%$, unless otherwise specified.

It seems proper to generalize the following statements concerning the

![Figure 1](https://example.com/fig1.png)

Fig. 1. 31P-NMR spectrum of 50 mM H$_3$P17O$_4$ (40 atom % 17O, 27 atom % 18O) in D$_2$O, pH 1.8 at 81.0 MHz. Spectral parameters: acquisition time 4.1 s, delay 1.0 s, spectra width 2 kHz, 70° pulse, line broadening 2.0 Hz, 1600 scans. The inset shows the expanded spectrum of the sharp peak, processed with Gaussian multiplication (LB = -2, GB = 0.2). Chemical shift 0.09 ppm downfield from 1 M H$_3$PO$_4$.

Table I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Labeled position</th>
<th>Condition</th>
<th>$S_{^{18}O-^{17}O}$(ppm)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_3$P18OO$_4$ClO$_4^-$</td>
<td>0.2M, D$_2$O</td>
<td>0.0188 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KH$_2$P17O$_4$</td>
<td>pH 2.1</td>
<td>0.0201 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K_3HP18O$_4$</td>
<td>pH 8.6</td>
<td>0.0218 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Ph$_3$P)$_2$PO$_4^-$</td>
<td>DCl$_3$</td>
<td>0.0391 ± 0.0029</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(Ph$_3$P)$_2$PO$_4$</td>
<td>pH 6.4</td>
<td>0.0293 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PH$_3$PO$_4$</td>
<td>DCl$_3$</td>
<td>0.0399 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(CH$_3$O)$_2$PO$_4$</td>
<td>DCl$_3$</td>
<td>0.0392 ± 0.0029</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(CH$_3$O)$_2$PO$_4$</td>
<td>pH 6.4</td>
<td>0.0209 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(CH$_3$O)$_2$PO$_4$</td>
<td>pH 8.4</td>
<td>0.0225 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5′-AMP</td>
<td>DCl$_3$</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ADP</td>
<td>α</td>
<td>0.0210 ± 0.0007</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>0.0282 ± 0.0007</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>0.0214 ± 0.0007</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β(PP)</td>
<td>0.0214 ± 0.0007</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α(PP)</td>
<td>0.0225 ± 0.0007</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>ATP</td>
<td>α</td>
<td>0.0317 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>0.0192 ± 0.0015</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>γ</td>
<td>0.0228 ± 0.0015</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>β(PP)</td>
<td>0.0228 ± 0.0015</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α(PP)</td>
<td>0.0228 ± 0.0015</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Co(NH$_3$)$_3$ADP</td>
<td>α</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Δ isomer</td>
<td>α, R$_p$</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A isomer</td>
<td>α, R$_p$</td>
<td>0.018 ± 0.0007</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Co(NH$_3$)$_3$ADP</td>
<td>α</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Δ isomer</td>
<td>α, S$_p$</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A isomer</td>
<td>α, S$_p$</td>
<td>0.0187 ± 0.0007</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Co(NH$_3$)$_3$ADP</td>
<td>Δ isomer</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Δ isomer</td>
<td>α, R$_p$</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A isomer</td>
<td>α, R$_p$</td>
<td>0.0187 ± 0.0007</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Co(NH$_3$)$_3$ADP</td>
<td>A isomer</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Δ isomer</td>
<td>α, S$_p$</td>
<td>0.0326 ± 0.0015</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A isomer</td>
<td>α, S$_p$</td>
<td>0.0187 ± 0.0007</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>MgADP</td>
<td>α</td>
<td>0.026 ± 0.0007</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ribose-1-P</td>
<td>P→18O</td>
<td>0.027 ± 0.0007</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P→18O→C</td>
<td>0.017 ± 0.0007</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
TABLE I (Continued)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Labeled position</th>
<th>Condition</th>
<th>S_{max} (ppm)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>P—18O</td>
<td>P—O</td>
<td>H$_2$O/D$_2$O; CDC$_3$</td>
<td>0.026</td>
<td>6</td>
</tr>
<tr>
<td>Axial methyl ester</td>
<td></td>
<td></td>
<td>0.015</td>
<td>6</td>
</tr>
<tr>
<td>P—OMe</td>
<td></td>
<td></td>
<td>0.040</td>
<td>6</td>
</tr>
<tr>
<td>P—O</td>
<td></td>
<td></td>
<td>0.038</td>
<td>10</td>
</tr>
<tr>
<td>P—O—Si</td>
<td></td>
<td></td>
<td>0.018</td>
<td>10</td>
</tr>
<tr>
<td>OCO$_3$H$_6$</td>
<td></td>
<td></td>
<td>0.039 ± 0.0029</td>
<td>2</td>
</tr>
<tr>
<td>OCO$_3$H$_6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSiMe$_3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPO18N$_{CH_3}$</td>
<td></td>
<td>CDC$_3$, 30°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P—O</td>
<td></td>
<td></td>
<td>0.043</td>
<td>13</td>
</tr>
<tr>
<td>P—O—CH$_3$</td>
<td></td>
<td></td>
<td>0.018</td>
<td>13</td>
</tr>
<tr>
<td>Methyl ester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P=O</td>
<td></td>
<td></td>
<td>0.043</td>
<td>11,14</td>
</tr>
<tr>
<td>P—O—CH$_3$</td>
<td></td>
<td></td>
<td>0.017</td>
<td>11,14</td>
</tr>
<tr>
<td>Ethyl ester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P=O</td>
<td></td>
<td></td>
<td>0.0418</td>
<td>9</td>
</tr>
<tr>
<td>P—OEt</td>
<td></td>
<td></td>
<td>0.0192</td>
<td>9</td>
</tr>
<tr>
<td>Axial P—O</td>
<td></td>
<td></td>
<td>0.029</td>
<td>15</td>
</tr>
<tr>
<td>Equatorial P—O</td>
<td></td>
<td></td>
<td>0.032</td>
<td>15</td>
</tr>
<tr>
<td>Ethyl ester</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P—OEt</td>
<td></td>
<td></td>
<td>0.014</td>
<td>15</td>
</tr>
<tr>
<td>P—O</td>
<td></td>
<td></td>
<td>0.038</td>
<td>15</td>
</tr>
<tr>
<td>'AMPS</td>
<td>α^{18}O</td>
<td></td>
<td>0.0331 ± 0.0007</td>
<td>1</td>
</tr>
<tr>
<td>'UMPS</td>
<td></td>
<td></td>
<td>0.032</td>
<td>16</td>
</tr>
<tr>
<td>'UMPS</td>
<td></td>
<td></td>
<td>0.032</td>
<td>16</td>
</tr>
<tr>
<td>tdo-U > PS</td>
<td></td>
<td></td>
<td>0.041</td>
<td>16</td>
</tr>
<tr>
<td>tdo-U > PS</td>
<td></td>
<td></td>
<td>0.041</td>
<td>16</td>
</tr>
<tr>
<td>DPOs</td>
<td>α^{18}O</td>
<td></td>
<td>0.037</td>
<td>17</td>
</tr>
<tr>
<td>DPOs</td>
<td>α^{18}O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNEO18O—O—OAd</td>
<td>S_p isomer</td>
<td>pD 6.4</td>
<td>0.0363 ± 0.0045</td>
<td>1</td>
</tr>
<tr>
<td>S_p isomer</td>
<td></td>
<td>pD 6.4</td>
<td>0.0363 ± 0.0045</td>
<td>1</td>
</tr>
</tbody>
</table>

6. 18O and 18O Effects and Chiral Thiophosphates

Magnitudes of 18O isotope shifts in 31P NMR, at least for the compounds in which the phosphorus has an oxidation number of +5:

1. The S value for a P—O double bond is 0.038–0.044 ppm, whereas that for a P—O single bond is 0.015–0.025 ppm. Bonds with partial double-bond character have S values proportional to the bond order (Cohn and Hu, 1980; Lowe et al., 1979).

2. In case of multiple substitution, the magnitude of shift is generally additive.

3. The S values of thiophosphates (in which an O is substituted by an S) are slightly greater than that of the corresponding phosphates.

Experimentally, resolution and quantitation are two important problems that dictate the capability of the 18O isotope-shift method in solving a specific biochemical problem. Even under optimal conditions both the integrals and the S values may still have an error of ±5%. In general, a medium field (e.g., 81 MHz 31P) is suitable to resolve most shifts. Aqueous samples are often treated with Chelex-100 or EDTA to remove paramagnetic impurities. Two commonly used techniques for resolution enhancement are Gaussian multiplication and convolution difference (the CD command in the Bruker DISNMR program). Although the Gaussian multiplication is known to change the relative intensity of signals with different line shapes (Clin et al., 1979), it may be safe to assume that the different peaks arising from the 18O isotope shift have the same line shape. Of course, any manipulation of the free induction decay leading to an improvement in resolution will result in a loss of signal-to-noise ratio.

III. 17O Quadrupolar Effects in 31P NMR

When a dipolar nucleus (31P) in the present case) is bonded directly to a quadrupolar nucleus (17O in the present case), the 31P nucleus will also be relaxed by virtue of its spin–spin coupling with 17O. This was termed "scalar relaxation of the second kind" by Abragam (1961). Such a scalar relaxation

is dependent on the magnitudes of the longitudinal relaxation time of the quadrupolar nucleus \(T_1 \), which is approximately equal to \(T_2 \) under present conditions and the spin–spin coupling constant \(J_{31P-17O} \) (abbreviated as \(J \)). When the product \(T_2 J \) is sufficiently small, the scalar relaxation dominates the relaxation of \(^{31}P \) and results in the collapse of the multiplet. Suzuki and Kubo (1964) have calculated the line shape of a dipolar nucleus coupled to a quadrupolar nucleus with \(I = \frac{1}{2} \), with different magnitudes of \(T_2 J \). Figure 2 shows the \(^{17}O\)- and \(^{31}P\)(\(^{17}O\))-NMR spectra of \(^{31}P\)OCl, \(^{31}P\) (CH\(_3\)O)\(^{17}O\), \(^{31}P\)OCl, \(^{31}P\)OCl, and \(^{31}P\)(CH\(_3\)O)\(^{17}O\). It can be seen in Fig. 2 that as the \(^{17}O\)-NMR coupling pattern collapses (decreasing \(J \) and/or increasing \(^{17}O\) linewidth \(\Delta O \)), the \(^{31}P\)-NMR coupling pattern also collapses. In all spectra the strong central peak is due to the residual unlabeled species. The compounds whose spectra are shown in Fig. 2 are all symmetrical, small molecules with \(P-O \) double bonds. These compounds have relatively long \(T_2 \) and large \(J \), thus showing fully or partially resolved \(^{17}O\)- and \(^{31}P\)(\(^{17}O\))-NMR spectra. For biophosphate molecules, \(T_2 \) is generally shorter (owing to a larger molecule size and a small degree of symmetry) and \(J \) generally smaller (owing to a \(P-O \) bond with a smaller \(\pi \) character). Therefore, the \(^{17}O\)-NMR signals of biophosphates are broader and less well resolved. Based on Fig. 2, we would expect the \(^{31}P\)(\(^{17}O\))-NMR signals of biophosphates to be a "broad singlet." Under this condition \((T_\alpha < 1) \), the scalar relaxation will contribute to the relaxation of the dipolar nucleus according to

\[
\frac{1}{T_{1c}} = \frac{8\pi^2J^2(I + 1)}{3} \frac{T_2}{1 + (\omega_p - \omega_o)^2T_2^2} \tag{1}
\]

and

\[
\frac{1}{T_{2c}} = \frac{4\pi^2J^2(I + 1)}{3} \left[T_2 + \frac{T_2}{1 + (\omega_p - \omega_o)^2T_2^2} \right] \tag{2}
\]

(Lehn and Kintzinger, 1973; James, 1975; Abragam, 1961), where \(I = \frac{1}{2} \), \(1/T_{1c} \) and \(1/T_{2c} \) are the contribution of scalar relaxation to the longitudinal and the transverse relaxations, respectively, of \(^{31}P\), \(J = J_{31P-17O} \), \(T_2 \) is the quadrupolar \(T_2 \) relaxation time of \(^{17}O\), and \(\omega_p \) and \(\omega_o \) are the angular precession frequencies of \(^{31}P\) and \(^{17}O\), respectively.

For small biophosphate molecules at the extreme narrowing limit \((\omega_p^2 \tau_\rho^2 \ll 1) \), \(T_2 \) is of the order of \(10^{-2} \sim 10^{-4} \) s. Because \(\omega_p - \omega_o = 10^7 \sim 10^8 \) Hz, \((\omega_p - \omega_o)^2T_2^2 \gg 1 \) and Eqs. (1) and (2) can be reduced to

\[
\frac{1}{T_{1c}} = 0 \tag{3}
\]

and

\[
\frac{1}{T_{2c}} = \frac{35}{3} \pi^2J^2T_2 \tag{4}
\]

Under this condition \(1/T_2 = 1/T_{2c} \) for \(^{31}P\), and \(T_2 = T_2 \) for \(^{17}O\), which justifies the approximations \(\Delta O = 1/\pi T_2 \) and \(\Delta P = 1/\pi T_{2c} \). The following approximate relationship can be obtained from Eq. (4):

\[
\Delta P \Delta O \approx \frac{35}{3} \pi^2J^2 \tag{5}
\]
6. \(^{17} O\) and \(^{18} O\) Effects and Chiral Thiophosphates

should not occur in small biophosphates in water. Therefore, \(^{17} O\) "quenches" the \(^{31} P\)-NMR signal of \(^{31} P-^{17} O\) species, causing an apparent decrease in the intensity of the \(^{31} P\)-NMR signal.

Such a "line-broadening effect" of \(^{17} O\) in \(^{31} P\) NMR has been used to locate the position of a \(^{17} O\) label (Tsai, 1979) and to calculate the percent enrichment of \(^{17} O\) (Huang and Tsai, 1982; Reed and Leyh, 1980). In addition, it has made possible analysis of the configuration of \([^{16} O,^{17} O,^{18} O]\)phosphate monoesters and \([^{16} O,^{17} O,^{18} O]\)thiophosphates by \(^{31} P\) NMR (Section VI).

IV. Prochiral Centers: \(^{31} P\) NMR

By a sulfur substitution, a prochiral phosphorus center (e.g., a phosphodiester) becomes a chiral center with two possible configurations (Scheme 5).

\[
\begin{align*}
\text{Scheme 5} \\
\text{1a} & \quad \text{or} \quad \text{1b}
\end{align*}
\]

Because most biophosphate molecules contain at least one chiral carbon center, the two isomers 1a and 1b are diastereomers and give distinguishable \(^{31} P\) chemical shifts. Table II summarizes the chiral thiophosphates that belong to this category and the chemical shifts of the chiral phosphorus of these isomers.

The chiral thiophosphates 1a and 1b can be used for two types of studies: stereochemical course of enzymatic substitutions (type 1 in Section I) and stereospecificity of the two isomers as enzyme substrates (type 3 in Section I). A great number of enzyme reactions have been investigated by this approach and have been reviewed as described in Section I. An example in this category is the stereospecific hydrolysis of DPPS with phospholipases A2 and C (Bruzik et al., 1982). As shown in Scheme 6, when DPPS(A + B)

\[
\begin{align*}
\text{Scheme 6} \\
\text{DPPS}(A) + \text{lyso-DPPS}(B) \\
\text{C}_{15}H_{31}COO S \quad \text{phospholipase A}_2 \\
\text{DPPS}(A + B) \quad \text{phospholipase C} \\
\text{DPPS}(B) + \text{O-P-O\(N\) or} \\
\end{align*}
\]
TABLE II
Phosphorus-31 Chemical Shifts of Diastereomeric Pairs of Chiral Thiophosphates

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Solvent</th>
<th>R_ϕ</th>
<th>S_ϕ</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPaoS</td>
<td>H_2O/D_2O, pH 7.3</td>
<td>41.7</td>
<td>42.1</td>
<td>Jaffe and Cohn (1978)</td>
</tr>
<tr>
<td></td>
<td>D_2O</td>
<td>40.61</td>
<td>40.96</td>
<td>Sheu and Frey (1977)</td>
</tr>
<tr>
<td>ATPoS</td>
<td>D_2O</td>
<td>42.74</td>
<td>42.97</td>
<td>Sheu and Frey (1977)</td>
</tr>
<tr>
<td>ATPS</td>
<td>H_2O/D_2O, pH 8.1</td>
<td>30.0</td>
<td>29.9</td>
<td>Jaffe and Cohn (1978)</td>
</tr>
<tr>
<td>UDPoS</td>
<td>D_2O</td>
<td>40.39</td>
<td>40.84</td>
<td>Sheu et al. (1979)</td>
</tr>
<tr>
<td>UTPoS</td>
<td>D_2O</td>
<td>42.62</td>
<td>42.39</td>
<td>Sheu et al. (1979)</td>
</tr>
<tr>
<td>GTPoS</td>
<td>D_2O</td>
<td>42.23</td>
<td>42.55</td>
<td>Connolly et al. (1982)</td>
</tr>
<tr>
<td>GTPS</td>
<td>D_2O</td>
<td>28.27</td>
<td>28.27</td>
<td>Connolly et al. (1982)</td>
</tr>
<tr>
<td>cAMPS</td>
<td>H_2O</td>
<td>54.27</td>
<td>53.22</td>
<td>Eckstein et al. (1974)</td>
</tr>
<tr>
<td></td>
<td>pH 9</td>
<td>55.66</td>
<td>54.05</td>
<td>Gerit et al. (1980)</td>
</tr>
<tr>
<td>U > pS</td>
<td></td>
<td>74.8 (endo)</td>
<td>76.1 (exo)</td>
<td>Usher et al. (1972)</td>
</tr>
<tr>
<td>Up(S)/A</td>
<td>D_2O</td>
<td>56.1</td>
<td>55.5</td>
<td>Burgers and Eckstein (1979)</td>
</tr>
<tr>
<td>DPPSCa</td>
<td>CDCl$_3$</td>
<td>59.61(A)</td>
<td>59.47(B)</td>
<td>Orr et al. (1982)</td>
</tr>
<tr>
<td>DPPSCb</td>
<td>CDCl$_3$</td>
<td>56.12(A)</td>
<td>56.07(B)</td>
<td>Bruzik et al. (1983)</td>
</tr>
<tr>
<td>CH$_2$OD</td>
<td>60.822(A)</td>
<td>60.801(B)</td>
<td>Bruzik et al. (1983)</td>
<td></td>
</tr>
<tr>
<td>D_2O/Triton X-100</td>
<td>57.133(A)</td>
<td>57.205(B)</td>
<td>Bruzik et al. (1983)</td>
<td></td>
</tr>
</tbody>
</table>

* Only the chemical shift of the chiral phosphorus is listed. In some of the original references reporting the chemical shift, the absolute configuration was not assigned. The assignments listed are based on some later reports which are not cited.

* The absolute configuration is unknown. Isomers A and B are arbitrarily defined.

* The absolute configuration is unknown. Isomers A and B are defined as in Bruzik et al. (1982).

(which gives two 31P-NMR signals in CDCl$_3$, as shown in Fig. 4A; the isomer resonating at lower field was defined as isomer A) was digested with phospholipase A$_2$ from bee venom, only isomer B was specifically hydrolyzed to lyso-DPPSC(B). Figure 4B,C shows the 31P-NMR spectra of the unreacted DPPSC(A) and the pure DPPSC(B) obtained from reacylation of lyso-DPPSC(B), respectively. On the other hand, phospholipase C is specific to isomer A. Figure 4D shows the 31P-NMR spectra of DPPSC after partial hydrolysis by phospholipase C from Bacillus cereus. The requirement of a specific configuration at phosphorus in the phospholipase C catalysis is to be expected since the reaction involves a P—O bond cleavage. However, the stereospecificity observed for phospholipase A$_2$ is surprising because it hydrolyzes the C-2 ester but not the phosphodiester, and it can tolerate substitution of the choline side chain by other groups.

Fig. 4. 31P-NMR spectra (81.0 MHz) of DPPSC(10 mM) in CDCl$_3$. (A) Mixture of diastereomers from chemical synthesis. (B) Pure isomer A recovered from hydrolysis by phospholipase A$_2$. (C) Pure isomer B (containing 3% isomer A) obtained from acylation of the product of phospholipase A$_2$ hydrolysis, lyso-DPPSC. (D) DPPSC after partial hydrolysis by phospholipase C. NMR parameters: spectral width 1000 Hz, acquisition time 4.1 s, 1H decoupling, line broadening 0.1 Hz, pulse width 12 µs (90° pulse at 20 µs). From Bruzik et al. (1982).

V. Pro-Prochiral Centers: 31P(18O) NMR or 31P(17O) NMR

By a sulfur substitution, a pro-prochiral phosphorus center (e.g., a phosphomonoester) becomes a prochiral center (Scheme 7).

\[
\begin{align*}
\text{Scheme 7}
\end{align*}
\]
As described in Section 1, when 2 is phosphorylated enzymatically, the reaction is most likely stereospecific because enzymes can differentiate between the two diastereotopic oxygens. Because the prochiral center becomes a chiral center after phosphorylation, the two isomers can be identified based on 31P chemical shifts.

If 2 is made chiral by an 17O or 18O label, the configuration of 2 can be determined by stereospecifically phosphorylating one of the two oxygens, followed by determining whether the labeled oxygen is located at the P—O—Pbridging position or the P—O nonbridging position. If 17O is used, a bridging 17O should cause a broadening (and a decrease in the apparent intensity) of both 31P-NMR signals, whereas a nonbridging 17O should exert the effect to only one 31P signal. If 18O is used, a nonbridging 18O should cause a larger isotope shift on the 31P signal than a bridging 18O.

The 31P(17O)-NMR method has been used to elucidate the steric course of acetyl-CoA synthetase-catalyzed reaction (Scheme 8) (Tsai, 1979). The enzyme was found to be specific to (R_p)-ATPαS but not to (S_p)-ATPαS. As shown in Scheme 9, when (R_p)-ATPαS and [17O]acetate are used as substrates, the 17O from acetate will be incorporated into the pro-S position of AMPS if the reaction proceeds with retention of configuration, or the pro-R position if inversion occurs. To determine the configuration of the 17O-labeled product, the chemical shifts of the competing signals are compared in Scheme 9.

Scheme 8

Scheme 9

Fig. 5. 31P-NMR spectra (at 32.2 MHz) showing the results of acetyl-CoA synthetase. (A) Unlabeled (S_p)-ATPαS. (B) Synthesized (S_p)-[α^{17}O, β^{18}O]ATPαS. (C) (S_p)-ATPαS from [18O$_2$]acetate. The insets represent the integrations of the corresponding signals. From Tsai (1979).
beveled AMPS, it is converted to \((S_p)-\text{ATP} \alpha S\) by stereospecific phosphorylation at the pro-\(R\) oxygen catalyzed by adenylyl kinase, followed by a second phosphorylation catalyzed by pyruvate kinase (Sheu and Frey, 1977; Jaffe and Cohn, 1978). By such a conversion, \(^{17}O\) should be incorporated into the nonbridging position of \((S_p)-\text{ATP} \alpha S\) if the step of acetate activation proceeds with retention of configuration. On the other hand, \(^{17}O\) should be located at the \(P-O-P\) bridging position if inversion occurs. A nonbridging \(^{17}O\) at \(P_o\) should cause the \(P_o\) signal to broaden and decrease in \(^{31}P\) NMR, whereas a bridging \(^{17}O\) should quench both \(P_o\) and \(P\) signals.

Figure 5 shows the \(^{31}P\)-NMR spectra of unlabeled \((S_p)-\text{ATP} \alpha S\) (A), the synthesized \((S_p)-[\alpha-^{17}O, \beta-^{17}O] \text{ATP} \alpha S\) (B), and the \((S_p)-\text{ATP} \alpha S\) obtained from the enzyme reaction (C). The \(^{17}O\) isotope used was 20% enriched and the enrichment of \([^{17}O]\)acetate was determined as 19%. In Fig. 5B, the \(P_o\) signal decreases to 67 ± 1% and the \(P\) signal to 83 ± 4%. In Fig. 5C, the \(P_o\) signal decreases to 80 ± 4% and the \(P\) signal to 82 ± 5%. Because both \(P_o\) and \(P\) have decreased in Fig. 5C, the results indicate that \(^{17}O\) must be located at the bridging position, and the reaction catalyzed by acetyl-CoA synthetase must proceed with inversion of configuration (Tsai, 1979).

The same problem could have been solved by use of \(^{18}O\) isotope shifts in \(^{31}P\) NMR, which may be advantageous over the \(^{17}O\) method in terms of quantitation but requires a high-resolution and a higher-field instrument. Indeed, our original idea was to use \(^{17}O\) NMR to differentiate the bridging and nonbridging \(^{17}O\), which was not successful with a low-field spectrometer used earlier; but it has now been shown to be feasible at higher magnetic field and higher temperature (Tsai, 1982; Gerit et al., 1982; Gerothanassis and Sheppard, 1982). On the other hand, a number of stereochemical studies in this category made use of \(^{18}O\)-labeling and mass spectroscopy, which gives relatively accurate quantitation but requires derivatization and/or degradation of the product.

There are, however, no alternatives in the configurational analysis of the chiral \([^{16}O,^{17}O,^{18}O]\)thiophosphates (\(P\)) discussed in the next section. The only method available is a \(^{31}P\)-NMR method based on the combined effects of \(^{17}O\) and \(^{18}O\).

VI. Pro-Pro-Prochiral Centers: \(^{31}P(^{18}O)\) NMR and \(^{31}P(^{17}O)\) NMR

Hydrolysis of phosphomonoesters generates inorganic phosphate (\(P\)), which contains a pro-pro-prochiral phosphorus center. To make a \(P\) chiral, it is necessary to make use of all three stable oxygen isotopes (\(^{16}O,^{17}O,^{18}O\)) and sulfur, as shown in Scheme 10.

The rationale of configurational analysis for chiral \(P\) is illustrated by Scheme 11. The same principle applies to chiral phosphate monoesters

where the \(P-S\) bond is replaced by \(P-OR\). Displacement of one of the three oxygen isotopes of \((S_p)-[^{16}O,^{17}O,^{18}O]P\) by a nucleophile \((RO^-)\) gives a mixture of three inseparable, isotopically different species. Among them, two (those in brackets) contain an \(^{17}O\) isotope, which should quench the corresponding \(^{31}P\)-NMR signals. Only the species that contains only \(^{16}O\) and \(^{18}O\) \((^{16}O\) at the pro-S position) should give a sharp, unquenched \(^{31}P\)-NMR signal. Analogously, the \((R)-[^{16}O,^{17}O,^{18}O]P\) should give correspondingly a non-\(^{17}O\)-containing species with \(^{18}O\) at the pro-R position.

Thus, determination of whether \(^{18}O\) is at the pro-R or pro-S position would tell the configuration of chiral \(P\) or chiral phosphate monoesters. A general way to achieve this is to derivatize stereospecifically the pro-R or pro-S oxygen. The \(^{31}P(^{18}O)\)-NMR method can then be used to distinguish the bridging and nonbridging \(^{18}O\) on the basis of the different magnitude of isotope shifts. Therefore, two main chemical steps need to be done to convert the chiral phosphoryl group to an analyzable form: a displacement with known stereochemistry and stereospecific derivatization of the prochiral oxygens. These two chemical steps vary from compound to compound, but the underlying principles remain the same.

To illustrate the application and configurational analysis of chiral \([^{16}O,^{17}O,^{18}O]\)thiophosphate, we describe the stereochemical study of \(S\)-nu-
cleotidase (Tsai and Chang, 1980; Tsai, 1980). The venom 5'-nucleotidase catalyzes hydrolysis of AMP to adenosine and P₈, but does not catalyze transphosphorylation or P₈ ↔ H₂O oxygen exchange (Koshland and Springhorn, 1956). We have first synthesized (R₈)-[¹⁸O]AMP and (S₈)-[¹⁸O]AMP of known configuration. Hydrolysis of these two isomers in H₂[¹⁸O] gave two chiral [¹⁸O,¹⁷O,¹⁸O]P₈ enantiomers with unknown configuration. The two main steps required were available separately in the literature (Eckstein, 1977), as shown in Scheme 12. The stereochemical course of each step in Scheme 12 had been elucidated separately (Richard and Frey, 1978; Richard et al., 1978) except that of phosphoglycerate kinase, which was elucidated by Webb and Trentham (1980) by use of synthesized chiral P₈ of known configuration on the basis of the same NMR analysis discussed next.

According to Scheme 12, the (R₈)-chiral P₈ should give (R₈)-ATP/βS with [¹⁸O] located specifically at the β-nonbridging position. The (S₈)-enantiomer should give (R₈)-ATP/βS with [¹⁸O] at the β-bridging position. It is known that a bridging [¹⁸O] should cause a smaller isotope shift in ³¹P NMR than a nonbridging [¹⁸O]. On this basis the configuration can be determined. However, Scheme 12 only shows the species that will give an unquenched ³¹P-NMR signal. In reality, each chiral P₈ species should give a mixture of three (R₈)-ATP/βS species (1a, 1b, and 1c in Scheme 13). In addition, it is impossible to have a chiral P₈ of 100% purity. A chiral P₈ sample actually contains up to six isotopic species, as shown in the left column of Scheme 13 (two of them are identical species); each of them gives three (R₈)-ATP/βS species. Fortunately, a careful examination of Scheme 13 reveals that there are only four different non-[¹⁸O]-containing species a, b, c, and d, and that all the nonchirally labeled P₈ species contribute equally to species b and c. Only the [¹⁴O,¹⁷O,¹⁸O]P₈ species gives specifically b or c, depending on whether the configuration is S or R, respectively. The amounts of species a and d have to do with isotopic enrichments but not configuration.

Figure 6 shows the P₈ signals of the (R₈)-ATP/βS obtained from PS[¹⁸O]₃⁻ and the two chiral P₈ enantiomers. The signal contains two overlapping doublets owing to ³¹P−³¹P coupling. Each half of a doublet contains four lines arising from the four species a, b, c, and d. The results are summarized in Table III, where the F value is defined as the ratio b/c, the purity refers to the percentage of chirally labeled P₈ species, and the chirality refers to the
6. 17O and 18O Effects and Chiral Thiophosphates

TABLE III

<table>
<thead>
<tr>
<th>P₈ samples</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>F value</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>17O18O3</td>
<td>41.3 ± 1.2</td>
<td>24.6 ± 0.1</td>
<td>22.1 ± 0.0</td>
<td>11.8 ± 1.2</td>
<td>1.11</td>
<td>S</td>
</tr>
<tr>
<td>(S)₆-AMPS</td>
<td>8.8 ± 0.5</td>
<td>42.8 ± 0.6</td>
<td>28.1 ± 0.5</td>
<td>20.3 ± 0.5</td>
<td>1.52</td>
<td>S</td>
</tr>
<tr>
<td>(R)₆-AMPS</td>
<td>12.2 ± 0.5</td>
<td>26.5 ± 1.6</td>
<td>38.8 ± 0.1</td>
<td>22.4 ± 2.0</td>
<td>0.68</td>
<td>R</td>
</tr>
<tr>
<td>Calculated</td>
<td>7.8</td>
<td>47.3</td>
<td>25.9</td>
<td>19.0</td>
<td>1.82</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>25.9</td>
<td>47.3</td>
<td>19.0</td>
<td>0.55</td>
<td>R</td>
</tr>
</tbody>
</table>

* Obtained from peak-height measurements for the $P₈$ signal of ATPβS. The errors represent deviations between the two nonoverlapping halves of the two doublets.

* Calculated for chiral $P₈$ of 47.3% purity and 90% chirality expected based on isotopic enrichments.

optical purity of chirally labeled $P₈$ species. The results indicate that $5'$-nucleotidase catalyzes the hydrolysis of AMPS with inversion of configuration, as shown in Scheme 14. The causes for the deviations of the observed F values from theoretical values have been discussed (Tsai, 1980).

![Scheme 14](image)

By such a 31P-NMR analysis, Webb and Trentham have also elucidated the stereochemical course of a number of nucleoside triphosphatases (Webb, 1982). The 31P-NMR analysis based on the combined effects of 17O and 18O is the only method available for configurational analysis of chiral $[^{14}$O,17O,18O]$P₈$, and is also a commonly used method for configurational analysis of chiral $[^{14}$O,17O,18O]phosphonoesters, which are covered by Gerlt (Chapter 7.)
Acknowledgments

The work from the author’s laboratory was supported by research grants GM 29041 and GM 30327 from the National Institutes of Health, and PCM 8140443 from the National Science Foundation.

References

