20220509 Angata T Epub

Phosphoproteomics Reveals the Role of Constitutive KAP1 Phosphorylation by B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia

Phosphoproteomics Reveals the Role of Constitutive KAP1 Phosphorylation by B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia

Mol Cancer Res. 2022 Aug 5; 20(8):1222-1232.
doi: 10.1158/1541-7786.MCR-21-0722

Read Article

Wu JL, Wu HY, Wu SJ, Tsai HY, Weng SH, Lin KT, Lin LI, Yao CY, Zamanova M, Lee YY, Angata T, Tien HF, Chen YJ, Lin KI.

Abstract

Application of B-cell receptor (BCR) pathway inhibitor ibrutinib for chronic lymphocytic leukemia (CLL) is a major breakthrough, yet the downstream effects following inhibition of BCR signaling and during relapse await further clarification. By comparative phosphoproteomic profiling of B cells from patients with CLL and healthy donors, as well as CLL B cells collected at multiple time points during the course of ibrutinib treatment, we provided the landscape of dysregulated phosphoproteome in CLL and its dynamic alterations associated with ibrutinib treatment. Particularly, differential phosphorylation events associated with several signaling pathways, including BCR pathway, were enriched in patient CLL cells. A constitutively elevated phosphorylation level of KAP1 at serine 473 (S473) was found in the majority of CLL samples prior to treatment. Further verification showed that BCR activation promoted KAP1 S473 phosphorylation, whereas ibrutinib treatment abolished it. Depletion of KAP1 in primary CLL cells decelerated cell cycle progression and ectopic expression of a KAP1 S473 phospho-mimicking mutant accelerated G2/M cell cycle transition of CLL cells. Moreover, temporal phosphoproteomic profiles using a series of CLL cells isolated from one patient during the ibrutinib treatment revealed the dynamic changes of several molecules associated with BCR signaling in the ibrutinib responsive and recurrent stages. Implications: This phosphoproteomic analysis and functional validation illuminated the phosphorylation of KAP1 at S473 as an important downstream BCR signaling event and a potential indicator for the success of ibrutinib treatment in CLL.